PHYS 705: Classical Mechanics

HOMEWORK COMMENTS

Indices and Derivatives again:

HW #2: 1.10

$$q_i = q_i \left(s_j, t \right)$$

 $q_i = q_i(s_i, t)$ Use different indices for q_i and s_i

especially, when evaluating
$$\frac{\partial L}{\partial s_i} = \frac{\partial L}{\partial q_j} \frac{\partial q_j}{\partial s_i} + \frac{\partial L}{\partial \dot{q}_j} \frac{\partial \dot{q}_j}{\partial s_i} + \frac{\partial L}{\partial t} \frac{\partial \dot{q}_j}{\partial s_i}$$

$$\dot{q}_i = \dot{q}_i \left(s_j, \dot{s}_j, t \right)$$
 not just $\dot{q}_i = \dot{q}_i \left(\dot{s}_j, t \right)$

check
$$\frac{d}{dt} \left[q_i \left(s_j, t \right) \right] = \frac{\partial q_i}{\partial s_k} \left(s_j, t \right) \dot{s}_k + \frac{\partial q_i}{\partial t} \left(s_j, t \right)$$

Also,

$$\frac{\partial q_i(s_j,t)}{\partial \dot{s}_k} = 0 \quad but \quad \frac{\partial \dot{q}_i(s_j,\dot{s}_j,t)}{\partial \dot{s}_k} \neq 0 \quad and \quad \frac{\partial \dot{q}_i(s_j,\dot{s}_j,t)}{\partial s_k} \neq 0$$

Choice of coordinates and convention for U (gravitational potential eng)

 \rightarrow U should decrease as the mass decreases in height

Choice of coordinates and convention for U (gravitational potential eng)

→ One can also choose

Reference point for U is different

Choice of coordinates and convention for U (gravitational potential eng)

 \rightarrow But this pair of z and U definitions are not physically consistent

$$U = 0 \rightarrow \qquad \leftarrow z = l$$

$$U = mgl \left(1 + \cos \theta\right)$$

$$U = mgl \rightarrow \qquad \leftarrow z = 0$$

$$U = 2mgl \rightarrow \qquad \leftarrow z = -l$$

$$V = 2mgl \rightarrow \qquad \leftarrow z = -l$$

$$V = 2mgl \rightarrow \qquad \leftarrow z = -l$$

$$V = 2mgl \rightarrow \qquad \leftarrow z = -l$$

Not standard convention: *U* increases as *m* decreases in height

Choice of coordinates and convention for U (gravitational potential eng)

 \rightarrow This pair of z and U is ok.

$$U = +mgl \rightarrow \qquad \leftarrow z = l$$

$$U = -mgl \cos \theta$$

$$U = -mgl \rightarrow \qquad \leftarrow z = 0$$

$$U = -mgl \rightarrow \qquad \leftarrow z = -l$$

$$Ok$$

$$Ok$$

Always draw a picture to indicate how your generalized coordinates related to your system

Don't forget the product rule:

 $ml^2 \sin^2 \theta \, \dot{\phi}$ is a function of two variables: θ and ϕ

So,

$$\frac{d}{dt}\left(ml^2\sin^2\theta\,\dot{\phi}\right) = ml^2\sin^2\theta\,\dot{\phi} + 2ml^2\sin\theta\cos\theta\dot{\theta}\dot{\phi}$$

LECTURE REVIEW

Variational Calculus: N indep (proper) generalized coordinates (with constraint explicitly included)

Everything proceeds as before, and we get:

$$\frac{dI}{d\alpha} = \int_{x_A}^{x_B} \sum_{i} \left[\frac{\partial F}{\partial y_i} - \frac{d}{dx} \left(\frac{\partial F}{\partial y_i'} \right) \right] \eta_i(x) dx = 0$$

If all the variations $\eta_i(x)$ are independent, this equation requires that each coefficients in the integrant must vanish independently. Then, we have,

$$\frac{\partial F}{\partial y_i} - \frac{d}{dx} \left(\frac{\partial F}{\partial y_i'} \right) = 0 \quad i = 1, 2, \dots, N$$

This is the Euler-Lagrange Eq for a proper set of generalized coords.

Variational Calculus: N improper generalized coordinates with M constraints

In general with *N dependent* variables and *M* constraints, we can write the E-L equation with *M* Lagrange undetermined multipliers as,

$$\begin{cases} \frac{\partial F}{\partial y_i} - \frac{d}{dx} \left(\frac{\partial F}{\partial y_i} \right) - \sum_{k=1}^{M} \lambda_k(x) \frac{\partial g_k}{\partial y_i} = 0 & i = 1, 2, \dots, N \\ g_k(y_i; x) = 0 & k = 1, 2, \dots, M \end{cases}$$
 (for stationarity)

Here, we have N+M unknowns: $y_i(x)$ and $\lambda_k(x)$ "Lagrange undetermined multiplier" And, we have N+M equations: top (N) and bottom (M)

The magnitude of the constraint force for y_i can also be calculated as:

$$Q_{i} = \sum_{k=1}^{M} \lambda_{k}(x) \frac{\partial g_{k}}{\partial y_{i}}$$

Hamilton's Principle

In Classical Mechanic, the dynamical quantity that we want to extremize is the

Action,

$$I = \int_{1}^{2} L(q_i, \dot{q}_i, t) dt$$

where L = T- U is the Lagrangian of the system

(Note: Here we don't require all the generalized coordinates q_i to be necessarily independent. The q_i 's can be linked through constraints.)

Hamilton's Principle: The motion of a system from t_1 to t_2 is such that the action evaluated along the actual path is *stationary*.

Lagrange Equation of Motion

So, we apply our variational calculus results to the action integral.

We also further assume that the system is **monogenic**, i.e., all forces except forces of constraint are derivable from a potential function which can be a function of q_i , \dot{q}_i , and t

The resultant equation is the Lagrange Equation of Motion with N generalized coordinates (not necessary proper) and M Holonomic constraints:

$$\begin{cases} \frac{\partial L}{\partial q_{i}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) - \sum_{k=1}^{M} \lambda_{k}(t) \frac{\partial g_{k}}{\partial q_{i}} = 0 & i = 1, 2, \dots, N \\ g_{k}(q_{i}; t) = 0 & k = 1, 2, \dots, M \end{cases}$$

Forces of Constraint

Comments:

1. The Lagrange EOM can be formally written as:

$$\frac{\partial L}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \sum_{k=1}^{M} \lambda_k(t) \frac{\partial g_k}{\partial q_i} = Q_i \qquad i = 1, 2, \dots, N$$

where the Q_i are the generalized forces which give the magnitudes of the forces needed to produce the individual constraints.

- the generalized coordinates q_i are NOT necessarily independent and they are linked through the constraint equations.
- since the choice of the sign for λ_k is arbitrary, the direction of the forces of constraint forces cannot be determined.

Proper Generalized Coordinates

Comments:

2. If one chooses a set of "proper" (*independent*) generalized coordinates in which the (N-M) Q_j 's are no longer linked through the constraints, then the Lagrange EOM reduces to:

$$\frac{\partial L}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) = 0 \qquad j = 1, 2, \dots, N - M$$

- In practice, one typically will explicitly use the constraint equations to reduce the number of variables to the (*N-M*) proper set of generalized coordinates.
- However, one CAN'T solve for the forces of constraint here